computational infrastructure for nuclear astrophysics Rate Manager | Rate Info Step 1 of 2 Select reactions from the tree belo p + 17F --> 18Ne (17fpg_dwb_old ▼

image: Black and NUCASTRODATA.ORG ▼ 🚞 User ▶ i JF001 ▶ 13Npg ▶ ☐ Coc_2000 ▶ ■ MSS_18fpa_Oct04 MSS_18fpg_Oct04 MSS_18f_Oct04 17fpg_dwb_old Zn Cu nucastrodata.org Best ▶ ■ ORNL Best 31 32 33 34 ▶ Sample_Lib_1 ▶ ■ ORNL Canonical-2000-Beta-0 ▶ ■ ORNL Canonical w Coc F18 Public 29 30 ▶ ■ REACLIB 2000 Beta 0.1 ► REACLIB 2000 Beta 0.1 Nova ▶ I NACRE Iliadis Add Selected Rate X-ray burst Peak Temperature 2 GK Bottlenecks 40 sec after peak: (cm^3/(mole*s)) $^{12}C(p,\gamma)^{13}N$, $^{37}K(p,\gamma)^{38}Ca$, $^{41}Sc(p,\gamma)^{42}Ti$, $^{44,45}V(p,\gamma)^{45,46}Cr$, $^{49}Mn(p,\gamma)^{50}Fe$, 58 Cu(p, γ) 45,46 Zn, 71 Br(p, γ) 72 Kr, ⁷⁵Rb(p, γ)⁷⁶Sr, ^{79,80}Y(p, γ)^{80,81}Zr, 84 Nb(p, γ) 85 Mo, 87 Tc(p, γ) 88 Ru, Rate 92 Rh(p, γ) 93 Pd, 95 Ag(p, γ) 96 Cd 10~ 10-Waiting Points 40 sec after peak: ⁷²Kr, ^{75,76}Sr, ^{79,80,81}Zr, ⁸⁴Mo, ⁸⁸Ru, ⁹²Pd Temperature (T9)

Michael Smith, Physics Division, Oak Ridge National Lab

coordinator@nucastrodata.org

sample investigations

before & after study: what was the impact of my measurement?

- assume you just measured a new rate of the $^{18}F(p,\alpha)^{15}O$ reaction
- rate is 10 times lower than previous "best" rate
- how does this impact predictions of ¹⁸F production in novae ?

approach

- modify existing $^{18}F(p,\alpha)^{15}O$ rate appropriately, save into new library
- combine with JINA REACLIB v2.0 into full library for a simulation
- choose a novae simulation, run with old rate & new rate
- compare final abundances in the two simulations
- draw your conclusion on the impact of the measurement
- variations: more nova models, different zones or all zones ...

sample investigations

sensitivity study: how does one abundance depend on a rate?

- you just read an article on ²²Na observations in nova ejecta
- you wonder if measurements of ²¹Na(p,γ)²²Mg and ²¹Ne(p,γ)²²Na reaction would help clarify the nuclear uncertainties in ²²Na abundance predictions
- what are the sensitivities of these predictions on these rates?

approach

- choose a reference rate library and a novae simulation
- choose a set of variations of these the reactions of interest (e.g., 0.01, 0.1, 1.0, 10, 100 ...)
- use automated sensitivity study tool to vary rate and run simulations
- use tools to plot out abundance vs. rate, look for strong correlations
- variations: more nova models, different rate variations, change other rates on neighboring nuclei ...

sample investigations

uncertainty analysis: what is the uncertainty of this predicted abundance?

- you have just made a new measurement of the
 ¹⁴O(α,p)¹⁷F reaction with an uncertainty that ranges from
 a factor of 2 higher to a factor of 20 lower
- what are the implications of this uncertainty for final abundance predictions in novae?

approach

- modify $^{14}O(\alpha,p)^{17}F$ rate to have "max" and "min" values
- save each into library, merge with JINA REACLIB v2.0 library
- choose a novae simulation, run with reference, max, & min rates
- compare final abundances, the spread gives the uncertainty
- draw your conclusion on the impact of the uncertainty on ¹⁶O / ¹⁸O and ¹⁷O/¹⁸O abundance ratios, on ¹⁸F and ²²Na abundances ...
- variations: examine different abundances; different nova models ...

computational infrastructure for nuclear astrophysics

- download java program for free at nucastrodata.org
- contact coordinator @ nucastrodata.org for help
- suggest new features for nuclear data / rates / libraries / simulations / visualization / analysis and we will work with you!